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Abstract
We introduce DebateBench, a novel dataset
consisting of an extensive collection of tran-
scripts and metadata from some of the world’s
most prestigious competitive debates. The
dataset consists of British Parliamentary de-
bates from prestigious debating tournaments on
diverse topics, annotated with detailed speech-
level scores and house rankings sourced from
official adjudication data. We curate 256
speeches across 32 debates with each debate
being over 1 hour long with each input being an
average of 32,000 tokens. Designed to capture
long-context, large-scale reasoning tasks, De-
bateBench provides a benchmark for evaluating
modern large language models (LLMs) on their
ability to engage in argumentation, delibera-
tion, and alignment with human experts. To
do well on DebateBench, the LLMs must per-
form in-context learning to understand the rules
and evaluation criteria of the debates, then ana-
lyze 8 seven minute long speeches and reason
about the arguments presented by all speakers
to give the final results. Our preliminary evalu-
ation using GPT o1, GPT-4o, and Claude haiku,
shows that LLMs struggle to perform well on
DebateBench, highlighting the need to develop
more sophisticated techniques for improving
their performance.

1 Introduction

The reasoning capabilities of Large Language Mod-
els (LLMs) have been extensively evaluated across
a variety of domains, including STEM problem-
solving (Cobbe et al., 2021; Clark et al., 2018;
Arora et al., 2023; Hendrycks et al., 2021b; Lu
et al., 2022; Bubeck et al., 2023), language un-
derstanding (Hendrycks et al., 2021a), and code
generation (Chen et al., 2021; Austin et al., 2021).
However, there remains a notable gap in the avail-
ability of sufficiently diverse and challenging nat-
ural language datasets that rigorously benchmark
reasoning over long-contexts. Additionally, exist-
ing benchmarks for long-context reasoning suffer
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Figure 1: Performance of models on DebateBench, the
y-axis represents the mean absolute error (MAE) of the
three tasks. More details in 3.2

from two main problems: (1) lack of "argument-
only" debates, and (2) non-comprehensive scoring
metrics. Argument-only debates differ from fac-
tual debates in that the judging panel knows no
facts beforehand and needs to be convinced of their
correctness. Existing metrics in these datasets are
also win/loss based, rather than provided by expert
annotators. A comprehensive overview of existing
benchmarks is provided in Section 2.

In this paper, we propose DebateBench, a novel
dataset consisting of an extensive collection of tran-
scripts and metadata of British Parliamentary de-
bates from prestigious debating tournaments on
diverse topics. It is an annotated dataset containing
detailed speech-level scores and house rankings
sourced from official adjudication data. We curate
256 speeches across 32 debates with each debate
being over 1 hour long with each input being an
average of 32,000 tokens. DebateBench serves as a
challenging benchmark for evaluating modern large
language models (LLMs) on their ability to engage
in argumentation, deliberation, and alignment with
human experts.
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DebateBench includes three primary evaluation
tasks: (1) Speech Scoring, where models predict
human-assigned scores for individual speeches, (2)
Speech Ranking, where the model predicts the
speaker rankings, and (3) House Ordering, where
models rank debating teams by adjudication out-
comes.

This paper makes three primary contributions:

1. New Dataset: We introduce, DebateBench,
a long-context reasoning benchmark com-
prising 32 debates conducted in the British
Parliamentary format, approximately having
100,000 words per debate.

2. Novel Task: We introduce complex multi-
turn debates for reasoning and structured for-
mat argumentation over long contexts, scored
against a human ground truth.

3. Evaluation: Top-of-the-line LLMs struggle
on DebateBench, demonstrating their inability
to handle dense long-context tasks that require
structured argumentation. Additional details
are discussed in Section 4.

2 Related Works

Reasoning in LLMs has been studied under multi-
ple contexts such as logical reasoning, mathemat-
ical reasoning, theorem proving etc. In real life
contexts, this extends to fields at the intersection of
reasoning, decision-making, and communication,
such as law, politics, and education. In this section
we summarise the literature on natural language
reasoning which is the closest related to our task.

2.1 Natural Langauge Reasoning
Natural Language datasets like HellaSwag (Zellers
et al., 2019), ARC (Clark et al., 2018), and MMLU
(Hendrycks et al., 2021a) test LLMs ability to un-
derstand natural language and ground their answers
in reality. HellaSwag tests models’ ability to com-
plete sentence by choosing the most likely option
from 4 setence provided, while ARC and MMLU
test models on either domain dependent informa-
tion or common sense reasoning by asking ques-
tions on biology, law, economics, etc. The Truth-
fulQA (Lin et al., 2022) benchmark is especially
designed to test models’ grounding in reality by
evaluating them on questions who’s answer are
prone to be misinformation or conspiratorial.

Other benchmarks like SuperGLUE (Wang
et al., 2020) and WinoGrande (Sakaguchi et al.,

2019) test models’ comprehension of natural lan-
guages by testing them on confusing or ambiguous
passages.

More closely aligned to our work are argument
evaluation benchmarks like VivesDebate-Speech
(Ruiz-Dolz and Iranzo-Sánchez, 2024), which is
a dataset of 29 debates from the 2019 university
debate tournament organised by the “Xarxa Vives
d’universitats”. However, the debates in this bench-
mark are not originally English, and have been ma-
chine translated from Catalan. The credibility of
machine translations in preserving complicated ar-
guments is low. Moreover, DebateBench includes
debates from renowned competitions hence the
judges’ scores are more credible and the debates
are of a higher quality. Other "debating" datasets
like USElecDeb60To16 (Haddadan et al., 2019),
and ETHIC (Lee et al., 2024) benchmark deal with
political debates between U.S. Presidential candi-
dates and in the British Parliament respectively.
These debates are significantly different from com-
petitive debates since the main focus is on rhetoric
and not logical argumentation. These debates also
don’t have a quantifiable metric of evaluation. The
DebateSum (Roush and Balaji, 2020) deals with
Policy Debates wherein the topics are released as
much a year ago and the competition focuses on
the presentation of evidence and data instead of
principled arguments.

2.2 Long-Context Modeling Techniques

Recent advancements in LLMs have integrated so-
phisticated long-context modeling techniques. For
instance, LLaMa 2 employs Rotary Position Em-
bedding (RoPE) (Touvron et al., 2023), while Vi-
cuna 1.5 (Zhang et al., 2023) fine-tunes LLaMa 2
to extend context lengths to 16,000 tokens. Sim-
ilarly, ChatGLM2-32k achieves a 32,000-token
context window, demonstrating the scalability of
these methods. State-of-the-art models like GPT-
4-Turbo (128,000 tokens) and Claude-3.5-Sonnet
(200,000 tokens) further push the boundaries of
context length, enabling the processing of extensive
information. Despite these advancements, there is
a notable scarcity of human-aligned benchmarks
designed to evaluate performance at such scale.

3 The DebateBench Dataset

The dataset comprises 32 debates, each consist-
ing of 8 speeches approximately 7 minutes long,
curated from prestigious tournaments such as
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Figure 2: The system prompt explaining the format of the debate as well as the metrics of judgment (a) along with
the information slide (if present) and the motion (b) and the transcript of the debate (c) which contains 8 speeches
by 4 teams (or houses) is passed to the model. The model is tested on 3 tasks (d) and the output is compared to the
results given by trained judges to compute the task scores for the model (e).

the Doxbridge Worlds Schools Debating Champi-
onships, LSE Opens, and past editions of the World
Universities Debating Championship (WUDC).
These tournaments are recognized for their high-
quality debates, ensuring a robust benchmark. A
full list of debates is provided in the Appendix.

Debates follow the British Parliamentary format,
featuring four teams (or houses): Opening Govern-
ment, Opening Opposition, Closing Government,
and Closing Opposition. Each team competes in
a structured round, with detailed format specifica-
tions provided in Figure 2.

The debate topic, referred to as the "motion," is
framed as a proposal for "the house." For exam-
ple, a motion from the Cambridge IV 2020 debate
states: "This house believes that protest movements
should actively integrate religious figures and in-
stitutions in opposition to authoritarian regimes."
Government teams support the motion, while op-
position teams oppose it. Teams are allotted 15
minutes of preparation time without internet ac-
cess, discouraging reliance on statistics or special-
ized knowledge. Instead, speakers are expected to
construct arguments based on principles and plausi-

ble scenarios, logically extending them. Judges,
guided by the WUDC judging manual1, are in-
structed to evaluate debates as "ordinary intelli-
gent voters" or "informed global citizens." They
discount appeals to highly specialized concepts un-
less clearly explained, ensuring arguments remain
accessible. While complex claims are permissible,
they must be articulated in jargon-free, understand-
able terms. During the evaluation, LLMs are pro-
vided with the judging manual and instructed to
adjudicate accordingly (see Appendix for the full
system prompt).

The judging manual also outlines heuristics for
speech objectives. For instance, the first two
speeches are expected to contextualize the de-
bate and clarify ambiguities, while the final two
speeches must identify major clashes and justify
their team’s success. The system prompt, adapted
from the WUDC manual, exceeds 18,000 tokens
and includes details on debate format, speaker roles,
and adjudication heuristics. Additionally, most mo-
tions include an "Info Slide" explaining key terms,
as illustrated in Figure 2. Consequently, perform-

1https://shorturl.at/QnjKe
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ing well on DebateBench requires models to excel
at in-context learning (Dong et al., 2024), further
underscoring the benchmark’s complexity.

3.1 Dataset Collection

We first curate debating videos from YouTube.
These videos are recorded with prior consent of
all speakers and publicly shared. We remove the
videos which contain less than 8 speeches, and
those in which large sections are unintelligible due
to bad audio quality. We then use GPT-Whisper
(Verma, 2024) to generate transcripts. However,
these transcripts are of low quality and need to be
processed before being used. We then use GPT-4o
mini to correct any grammatical errors and spelling
mistakes. The timestamps are preserved in this
step. It was observed, that this step was able to
correctly infer punctuation and correct grammar
and spelling.

Finally, all the transcripts are manually verified
to ensure a high quality dataset. Speaker tags and
other tokens are added to differentiate speakers in
the debate.

Statistic Value

Total number of speeches 256
Total number of words 884,395
Total number of tokens 1,326,592
Average number of words per speech 11,904
Total hours of content ∼36
Average speaker score 80.25
Speaker score standard deviation 2.69

Table 1: Statistics of the dataset. The tokens are calcu-
lated assuming the standard 1 word ≈ 1.5 tokens.

3.2 Evaluation Metrics

We propose three tasks for evaluating the perfor-
mance of large language models (LLMs) on De-
bateBench. For each task, the models are provided
with the judging manual along with the debate tran-
script:

• Verdict Prediction: The models are tasked
with predicting the ranking of the four houses.
The predicted ranking is compared to the
ground truth ranking generated by the trained
judges by computing the absolute difference
at each position. Let the predicted ranking
be denoted as rpred = (r1, r2, r3, r4) and the
ground truth ranking as rgt = (g1, g2, g3, g4),

where ri and gi are the positions of the houses
in the predicted and ground truth rankings, re-
spectively. The verdict prediction score, ∆, is
defined as:

∆ =

4∑
i=1

|ri − gi|

If the model predicts the ranking correctly,
then ∆ = 0.

• Speaker Scores: Each of the 8 speeches is
assigned a score between 50 and 100 by the
judges. The guidelines for assigning these
scores are provided in the judging manual and
passed as a system prompt. This task is for-
mulated as a regression problem, where the
model predicts a score si ∈ [50, 100] for each
speech i. The model’s prediction ŝi is com-
pared to the true score si by taking absolute
difference. Additionally, we introduce toler-
ance ϵ, allowing the predicted score to fall
within an acceptable range of the true score.
We ablate on multiple tolerance values, rang-
ing from 2 to 9.

• Speaker Ranks: Given the challenging na-
ture of the speaker scoring task, we in-
troduce a simpler extension by asking the
model to rank the 8 speeches. Let rpred =
(r1, r2, . . . , r8) represent the predicted ranks,
where ri denotes the rank of speech i, and
rgt = (g1, g2, . . . , g8) denotes the true ranks.
We evaluate model performance using the ab-
solute difference metric, defined as:

∆rank =

8∑
i=1

|ri − gi|

A lower ∆rank indicates a better match with
the ground truth ranking. Models that per-
form well on the speaker scoring task should
also perform well on this ranking task. How-
ever, this task offers greater differentiation
in cases where models perform poorly on
speaker scores.

4 Experiments

4.1 Experimental Setup

Settings We utilize the official WUDC judging
manual as context and pass the debate transcripts
for evaluation. We apply the corresponding chat
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Figure 3: Model accuracy for speaker score prediction
at varying delta windows from ground truth

and system prompts for each LLM and keep the
temperature set to 0.0 while retaining all other sam-
pling parameters as the standard configurations.

Models We evaluate 3 LLMs, namely OpenAI’s
GPT4o(OpenAI et al., 2024) and o1(Jaech et al.,
2024), and Anthropic’s Claude Haiku 3.5.

4.2 Main Results

From 1 we can see that o1 performs the best across
the three models for ranking tasks but is still consid-
erably unreliable, with high errors for the verdict
and speaker ranking prediction. gpt4o and Haiku
3.5 have comparable results regarding verdict pre-
diction, with all three having an average error of
1. However, they have varying results on speaker
scores, with Haiku performing the best and gpt4o
performing the worst. This demonstrates that cur-
rent LLMs are unable to handle contexts of this
size when detailed reasoning is involved.

4.3 Speaker Score Accuracy

To evaluate how close LLMs are in predicting
speaker scores, which is well demarcated in the
WUDC judging manual, we evaluate their perfor-
mance by checking whether they were a certain
tolerance away from the ground truth. From Figure
3 we see that Claude Haiku performs well, how-
ever even at a tolerance of 5, models are about 70%
accurate for score prediction. While this may seem
good, it is worth noting that the speaker scores have
a standard deviation of 2.69 (as shown in Table 1),
which implies that a tolerance of 5 is considerably
high.

5 Future Work and Conclusion

In this work, we introduce DebateBench, a novel
dataset comprising high-quality transcripts and

metadata from prestigious competitive debates.
This dataset is designed to evaluate language mod-
els on their ability to perform in-context learning
and logical reasoning over long-form, natural lan-
guage discourse.

Evaluation: We also present a preliminary eval-
uation of o1, GPT4o, and Claude Haiku 3.5 on
three newly formulated tasks. Our findings indicate
that current models struggle to achieve high accu-
racy on DebateBench, highlighting the challenges
posed by its complex reasoning and extensive con-
text requirements.

The limited class of models for evaluation was
due to limitations of cost, and future works plan to
include a broader range of models featuring vary-
ing context windows, different types of preference
alignment, and models fine-tuned on this task to
evaluate LLMs in a much deeper mannDataset er.

Dataset Extension: A natural extension of this
dataset involves incorporating argument annota-
tions into the debate transcripts. Such annotations
would enable additional benchmarking tasks, in-
cluding question-answering, and could serve as a
valuable resource for assessing human alignment,
as they would be produced by experienced debate
judges.

DebateBench is currently formulated to include
only those debates for which the metadata defining
all three tasks was available. This constraint can
be mitigated by expanding the dataset to include
debates lacking certain metadata, such as speaker
scores. While these debates may not support all
evaluation tasks, they will be valuable for verdict
prediction and increase the scope of evaluation.

Future Work: Given that debate motions fre-
quently address contentious topics, DebateBench
also provides a valuable resource for analyzing bias
in language models by examining how they weigh
opposing arguments on controversial issues.

Overall, DebateBench presents a challenging
benchmark for language model evaluation while
simultaneously facilitating future advancements in
areas such as human alignment and bias mitigation.
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A System Prompt

Below is the system prompt for the verdict predic-
tion task:

You are an experienced debate judge. You
have the following judging manual

context:
{judging_manual}

Below is a single text containing all 8
speeches for this round:
{all_speeches}

Use the judging manual to assign speaker
scores in a fair and consistent

manner.
Output the rankings in the following

format:
First: <house >
Second: <house >
Third:<house >
Fourth: <house >

For example , a sample output could be:
First: OG
Second: CG
Third: OO
Fourth: CO

No additional explanation should be
provided.

Figure 4: The judging manual is adapted from the
WUDC judging manual and contains 15,361 words. The
entire prompt, including the judging manual, can be
found in the code repository.

Astana Open 2023 Round 3
Astana Open Round 4
Astana Open Round 5
Belgrade WUDC 2022 Round 6
Belgrade WUDC 2022 Round 7
Belgrade WUDC 2022 Round 8
Belgrade WUDC 2022 Round 9 Room 2
Cambridge IV 2020 Round 1
Cambridge IV 2020 Round 2
Doxbridge 3 Round 4
Doxbridge 4 Round 1
Doxbridge 4 Round 2
Doxbridge Worlds 2021 West Round 4
LSE Open 2023 Round 2 Room 2
LSE Open 2023 Round 3 Room 1
LSE Open 2023 Round 3
LSE Open 2024 Round 1A
LSE Open 2024 Round 3 A
LSE Open 2024 Round 3 B
Pakistan Pre ABP 2024 - Round 5
Panama WUDC 2025 Round 1
Panama WUDC 2025 Round 5
Panama WUDC 2025 Round 7
The Natolin European Round Robin

Debating Championships Round 1
The Natolin European Round Robin

Debating Championships Round 2
The Natolin European Round Robin

Debating Championships Round 3
The Natolin European Round Robin

Debating Championships Round 4
The Natolin European Round Robin

Debating Championships Round 5
Doxbridge 3 Round 3
Doxbridge Pre WUDC 2022 Round 5
Doxbridge Worlds 2021 West Round 5
LSE Open 2023 Round 5

Figure 5: List of debate rounds included in the dataset.
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